RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2016

SECOND YEAR [BATCH 2014-17]

Date : 18/05/2016 Time : 11 am – 1 pm CHEMISTRY (Honours) Paper: IV [Gr. A&B]

Full Marks : 50

[3]

[4]

[3]

[3]

[4]

[2]

[Use a separate Answer Book for each group]

<u>Group – A</u>

[Attempt one question from each Unit]

<u>Unit – I</u>

1. a) for an weak electrolyte HA, variation of $\frac{1}{\Lambda_{eq}}$ with $\Lambda_{eq}C$ gives a straight line with unit slope.

Derive the expression of Λ_{eq} in terms of dissociation constant and degree of dissociation.

- b) A conductivity cell has a resistance equal to 250 ohm with 0.02 (N) KCl solution and 10⁵ ohm with 6×10^{-5} (N) NaOH solution at 25°C. If the specific conductance of 0.02 (N) KCl is 0.00277 ohm⁻¹cm⁻¹ and $\lambda_{NH_4^+}^0 = 73.4$ ohm⁻¹cm²eqv⁻¹ and $\lambda_{OH^-}^0 = 198$ ohm⁻¹cm²eqv⁻¹ at 25°C, calculate the dissociation constant of NH₄OH.
- c) At 25°C, ΔG of formation of H₂O (ℓ) is -237.244 KJ mol⁻¹ and that of its ionization into H⁺ and OH⁻ ions is 79.709 KJ mol⁻¹. What will be reversible emf of the following cell at 25°C? Pt | H₂(g.1atm) | H⁺ || OH⁻ | O₂(g,1atm) | Pt
- d) Construct a cell in which the reaction is $AgBr(s) \rightleftharpoons Ag^+ + Br^-$. $E^{\circ}_{AgBr/Br^-/Ag}$ (reduction) = 0.071V and $E^{\circ}_{Ag^+/Ag} = 0.799V$ at 25°C. Calculate K_{sp} of AgBr at 25°C. [3]

2. a) Find out the expression for emf of the following concentration cell $Ag | AgCl(s) | HCl soln(a_1)$: HCl soln(a_2) | AgCl(s) | Ag

where a_1 and a_2 are the mean activities of two HCl solutions.

- b) The equivalent conductance of LiCl at infinite dilution is 115.03×10⁻⁴ Sm²mol⁻¹. The transport number of the cation is 0.336. Calculate the mobility of Li⁺ ion and its speed if 6.0 volt is applied across the electrodes 4.0 cm apart. [3]
- c) The potential of the cell $Zn | ZnCl_2 soln(m=0.01021) | AgCl(s) | Ag$ is 1.1566 volt at 25°C. What is the mean ionic activity co-efficient of $ZnCl_2$ in this solution?

$$(E_{Zn^{2+}|Zn}^{o} = -0.7618 \text{ volt}, E_{Cl^{-}|AgCl(s)|Ag}^{o} = 0.2225 \text{ volt})$$
[3]

- d) Construct a galvanic cell where the net reaction is $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$. [2]
- e) Discuss the principle of moving boundary method for determination of transport number of an ion in an electrolytic solution.
 [2]

<u>Unit – II</u>

- 3. a) Show that osmotic pressure , π of a dilute solution is proportional to the concentration of solute at a constant temperature.
 - b) An organic acid (molar mass = 60) associates in benzene to form a dimer when 1.65 g of the acid is dissolved in 100g benzene, the boiling point is raised by 0.36° C. Calculate the degree of dissociation of the acid in benzene. [K_b = 2.6 Kg K mol⁻¹] [3]
 - c) Define an ideal solution in terms of chemical potential.

d) Given that fugacity of a gas (γ) can be expressed as $\ln \gamma = \int_{0}^{p} \frac{z-1}{p} dp$ derive (and also plot) how γ

varies with P at a constant temperature for a gas that obeys the law $P(\overline{V}-b) = RT$. [3]

4. a) Show that—

i)
$$\left(\frac{\partial \overline{V}_{i}}{\partial T}\right)_{P} = -\left(\frac{\partial \overline{S}_{i}}{\partial P}\right)_{T}$$
.
ii) $\left(\frac{\partial A}{\partial n_{i}}\right)_{v,T,n_{j}(j\neq i)} = \left(\frac{\partial H}{\partial n_{i}}\right)_{P,S,n_{j}(j\neq i)}$ (The used terms have their usual significance). [2+2]

- b) Starting with the van't Hoff isochore corresponding to the equilibrium constant for the equilibrium between a solution and frozen solvent, show that the freezing point (T_f) of the solvent in solution decreases linearly with solute molality (m) for very dilute solutions.
- c) Justify or criticize : Lowering of freezing point is an entropy effect.
- d) At 25°C a solution containing 2.50 gm of a substance in 250.0 cc of solution exerts an osmotic pressure of 400 pascal. What is the molar mass of the substance? [3]

<u>Group - B</u>

[Attempt one question from each Unit]

<u>Unit – III</u>

5. a) i)
$$\underbrace{H_2O_2 + aq \, NaOH}_{OH} \longrightarrow$$
 [2]

ii)
$$\square \longrightarrow^{O}_{Br} \longrightarrow$$
 [2]

Predict the products of the above reactions, with plausible mechanism in each case.

iii) Delineate the mechanism of Orton rearrangement of

$$\sim N <_{COCH_3}^{Cl}$$

CUO

- b) Alkaline hydrolysis of C_6H_5CN affords the salt of an acid but in the presence of H_2O_2 an amide is formed; explain.
- c) Explain the feature of higher stability of a diazoacetic ester compared to that of diazomethane.
- d) Write the product and reaction mechanism of C_6H_6 with ethyl diazoacetate in the presence of an appropriate radiation. [
- e) Explain the following sets of reaction, give proper explanation.

$$\overset{\text{Et}}{\longrightarrow} C \overset{\text{Et}}{\overset{\text{OH}}{\longrightarrow}} \overset{\text{Et}}{\overset{\text{Et}}{\longrightarrow}} \overset{\text{Et}}{\overset{\text{but}}{\longrightarrow}} \overset{\text{NH}_2}{\overset{\text{NH}_2}{\overset{\text{NH}_2}{\longrightarrow}}} \overset{\text{OH}}{\overset{\text{OH}}{\longrightarrow}} + \overset{\text{OH}}{\overset{\text{OH}}{\longrightarrow}}$$

- 6. a) Two isomeric α chloroketones having the molecular formula C₉H₉ClO, when treated separately with aqueous NaOH, give the sodium salt of β phenylpropionic acid. Explain with mechanism. [3]
 - b) Predict the product of following reaction and write the mechanism. Comment on the ratedetermining step and pH of the reaction medium. [3]

[2] [3]

[2]

[2]

[2]

[3]

[2]

- c) Arndt-Eistert reaction of an acyl chloride requires two molar quantities of diazomethane. What is the role of the second molecule of diazomethane? Show the mechanism of the reaction involving a migration process, induced generally by moist Ag₂O. The reaction can be used for homologation of a carboxylic acid (RCO₂H) to RCH₂CO₂H; explain.
- d) CICH₂COONa can be converted to CH₃NO₂ with the help of an aqueous solution of sodium nitrite. Explain the transformation.
- e) N, N, N- trimethylanilinium chloride undergoes reaction on strong heating (300°C) to produce a primary amine hydrochloride. What is the role of high temperature? Show the development in a stepwise manner.

Phenylhydrazine hydrochloride is heated at 250°C to afford two products of which one is produced in major. Explain the reaction. [3]

Unit – IV

- 7. a) Ethyl acetoacetate reacts with one molar proportion of methyl magnesium bromide; explain the reaction.
 - b) Show the steps occurring in the reaction of $R_2C = O$ with RMgX (OEt₂).
 - c) Show steps for reaction of alkyl Lithium (RLi) with an appropriate starting material for generating $R_2C = O$. [1]
 - d) Reaction of isopropyl magnesium bromide with diisopropyl ketone produces diisopropyl carbinol; explain. [2]
 - e) Use appropriate organometallic reagents to carryout the following conversions.

- ii) $Me_2C = O \rightarrow Me_2CH CHO$
- 8. a) Explain with examples
 - i) Synthone and synthetic equivalent
 - ii) Functional group interconversion and functional group addition. $[2 \times 1 \cdot 5]$
 - b) Synthesize the following compounds showing proper disconnections (attempt any two) :
 - $Ph_{Me} > C < CH_{C} = CH$ ii) i) $Me_3C - O - CH_3$ iii)
 - c) Carry out the retrosynthesis of the following compounds to obtain easily available starting materials, show the forward synthesis also. [2×2]

X

(3)

 $[2 \times 1 \cdot 5]$

[4]

[2]

[1]

[2]

[2×2]